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Fitting Integrands to Basic Integration Rules

Table 1: Review of basic integration rules (a > 0)

1. [kf(u)du=k [ f(u)du 2. [[f(u) £ g(u)]du

= [f(u)du=£ [ g(u)du
3. fdu=u+C 4.fu”du:%+C,n7éfl
5. 9% =Inju|+C 6. [e"du=e"+C
7. [a'du=(5)a"+ C 8. [sinudu=—cosu+ C
9. [cosudu=sinu+C 10. ftanudu = —Inj|cosu|+ C
11. fcotudu =In|sinu|+ C 12. [secudu =Inl|secu+tanu|+ C
13. [escudu= —Inlescu+cotu| + C 14, [sec® udu=tanu+ C
15. [esc® udu = —cotu+ C 16. [secutanudu =secu+ C
17. [escucotudu = —cscu+ C 18. f\/;‘iiuz:arcsin§+C
19. [ az(iuuz =larctan¥ + C 20. fu\/‘j;’j:%arcsec%—i—C

Szu-Chi Chung (NSYSU) Chapter 8 Integration Techniques and Improp December 26, 2024 4/109



Example 1 (A comparison of three similar integrals)

Find each integral. ,
a. [Fgdx b, [Fodx e [Fgdx
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Example 2 (Using two basic rules to solve a single integral)

Evaluate fol%dx.
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Figure 1: The area of the region is approximately 1.839.
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Example 3 (A substitution involving 2 — u?)

Find [ dx.

2
X
V16—x°
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Example 4 (A disguised form of the Log Rule)

Find [ L dx.
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Example 5 (A disguised form of the Power Rule)

Find [(cot x) In(sin x) dx.
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Example 6 (Using trigonometric identities)

Find ftan2 2x dx.
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Procedures for fitting integrands to basic integration

Technique Example
Expand (numerator). (1+e¥)? =1+2e + e
1+x _ 1 X
Separate numerator. X2+11 = o +1X2+1
Complete the square. =
. 9 V2x—x2 V/1-(x—1)2
o 0 0 g 0 X2 o 1
Divide improper rational function. X2+21 =1- 27121 , _
o X _ 2x42-2 __ X _
Add and subtract terms in numer- T = P = ot
ator. 2
(x+1)?
Use trigonometric identities. cot? x = csc® x — 1
: 2.2 1 _ 1 1—sin x
Multiply and. divide by 1y = (1+sinx) (ksinx)
Pythagorean conjugate 1—sin x
1—sin2g< .
_ 175|2nx — sec2x _ S|n2x
COs~“ X COs“ X
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Integration by parts

@ In this section you will study an important integration technique
called integration by parts. This technique can be applied to a wide
variety of functions and is particularly useful for integrands
involving products of algebraic and transcendental functions.

@ For instance, integration by parts works well with integrals such as

/xlnxdx, /Xzexdx7 and /exsinxdx.

@ Integration by parts is based on the formula

d
I [uv] = ' + v

o If v/ and v/ are continuous, you can integrate both sides of this
equation to obtain

uv:/uv/dx+/vu/dx:/udv+/vdu.
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Theorem 8.1 (Integration by Parts)

If u and v are functions of x and have continuous derivatives, then

/udv:uv—/vdu:uv—/vu'dx.

Guidelines for integration by parts

© Try letting dv be the most complicated portion of the integration
rule. Then u will be remaining factor(s) of the integrand.

@ Trying letting u be the portion of the integrated whose derivative is

a function simpler than u (LIATE). Then dv will be the remaining
factor(s) of the integrand.

Note that dv always includes the dx of the original integrand.
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Example 1 (Integration by parts)

Find [ xe*dx.
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Example 2 (Integration by parts)

Find fx2 In x dx.
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Example 3 (An integrand with a single term)

Evaluate [ Inxdx.
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Example 4 (An integrand with a single term)

1.
Evaluate fo sin~1 x dx.
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(2)

y = arcsin x

SIE}
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Example 5 (Repeated use of integration by parts)

Find [ x2 sin x dx.
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Example 6 (Integration by parts)

Find fsec3 x dx.
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Summary of common integrals using integration by parts (LIATE)
@ For integrals of the form

/x”eax dx, /x” sinaxdx, or /x” cos ax dx

let v = x" and let dv = e?* dx, sin axdx, cos ax dx.

@ For integrals of the form
/x”lnxdx, /X”arcsin axdx, or /X”arctan ax dx

let v = In x, arcsin ax, or arctan x and let dv = x" dx.

© For integrals of the form
/ e®sin bxdx, or /eax cos bx dx

let u = sin bx or cos bx and let dv = e dx.
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Integrals involving powers of sine and cosine

@ In this section you will study techniques for evaluating integrals of the
form

/sinmxcos"xdx and /secmxtan”xdx

where either m or n is a positive integer.

@ Break them into combinations of trigonometric integrals so you can
apply the Power Rule. For instance, you can evaluate fsin5xcosxdx
by letting u = sinx. Then, du = cos xdx and you have

6

6 .
/Sinsxcosxdx:/USdu:%—i—C: S|n6X+C.

@ To break up [ sin™ x cos” x dx into forms to which you can apply the
Power Rule, use the following identities.

. 1 — cos2x 1 + cos2x
2x=1 sinPx="—""" (os?x=-—— """

2 2

sin® x + cos
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Guidelines for evaluating integrals involving powers of sine and cosine

@ If the power of the sine is odd and positive, save one sine factor
and convert the remaining factors to cosines.

Odd Convert to cosines Sevia For @l
- 2k +1 n _ -2 Nk n :
sin xcos" xdx = (sin®x)*  cos" x sin x dx
— 2 \k n :
= /(1 — cos” x)" cos" x sin x dx
@ If the power of the cosine is odd and positive, save one cosine

factor and convert the remaining factors to sines.

Odd Convert to cosinesgaye for du

— ——
/sinmxcos2k+1xdx: /sinmx (cos® x)k  cos x dx

= /sin’”x(l—sin2 x)K cos x dx
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© If the power of both the sine and cosine are even and nonnegative,
make repeated use of the identities
.9 1 —cos2x 5 14 cos2x
sin“x=——— and cos"x=—"\—
2 2
to convert the integrand to odd powers of the cosine. Then proceed
as in guideline 2.
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Example 1 (Power of sine is odd and positive)

Find [ sin®x cos* x dx.
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Example 2 (Power of cosine is odd and positive)

Find fﬂ/g \C;’Six dx, as shown in Figure 2.
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Figure 2: The area of the region is approximately 0.239.
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Example 3 (Power of cosine is even and nonnegative)

Find [ cos* x dx.
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Wallis's Formulas
a. If nis odd (n > 3), then

[ O3

b. If nis even (n > 2), then

/O”/zcosnxdx_ AEE-EE

These formulas are also valid if cos” x is replaced by sin” x.
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Integrals involving powers of secant and tangent

@ The following guidelines can help you evaluate integrals of the form

[ sec™ x tan" x dx

© If the power of the secant is even and positive, save a
secant-squared factor and convert the remaining factors to
tangents. Then, expand and integrate.

Guidelines for evaluating integrals involving powers of secant and tangent

even Convert to tangents Save for du

~ =~ —_—— —_——
/sec 2k xtan”xdx:/ (sec®x)*71  tan" x sec? x dx

= /(1 + tan® x)K" tan” x sec® x dx
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@ If the power of the tangent is odd and positive, save a
secant-tangent factor and convert the remaining factors to secants.
Then, expand and integrate.

Odd Convert to secants  gave for du

— —_—~—
/sec’”xtan2k+1xdx:/sec’"1x (tan? x)K sec xtan x dx

= /sec'"_1 x(sec® x — 1)K sec x tan x dx

© If there are no secant factors and the power of the tangent is even
and positive, convert a tangent-squared factor to a secant-squared
factor, then expand and repeat if necessary.

Convert to secants

/tan”xdx: /tan”_zx (tan’x)  dx

= /tan"2 x(sec® x — 1) dx
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O If the integral is of the form [ sec™ x dx, where m is odd and
positive, use integration by parts, as illustrated in Example 5 in the
preceding section.

© If none of the first four guidelines applies, try converting to sines
and cosines.
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Example 4 (Power of tangent is odd and positive)

Find [ 82X dx.
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Example 5 (Power of secant is even and positive)

Find [ sec* 3xtan®3x dx.
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Example 6 (Power of tangent is even)

Evaluate foﬂ/d' tan* x dx.

Szu-Chi Chung (NSYSU) Chapter 8 Integration Techniques and Improp December 26, 2024 40 /109



0.5+

Figure 3: The area of the region is approximately 0.119.
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Example 7 (Converting to sines and cosines)

Find [ 255X dx.

tanZ x
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Integrals involving sine-cosine products with different
angles

@ Integrals involving the products of sines and cosines of two different
angles occur in many applications.

@ In such instances you can use the following product-to-sum identities.

sin mx sin nx = %(cos[(m — n)x] — cos[(m + n)x])
sin mx cos nx = %(sin[(m — n)x] + sin[(m 4+ n)x])

COS MX COS NX = %(cos[(m — n)x] + cos[(m + n)x])
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Example 8 (Using Product-to-Sum Identities)

Find [ sin5x cos4x dx.
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Trigonometric substitution

@ Use trigonometric substitution to evaluate integrals involving the

radicals
Va2 — w2, a2+ 2, and Vu?— 22

@ The objective with trigonometric substitution is to eliminate the
radical in the integrand. You do this by using the Pythagorean
identities

cos?f =1—sin?0, sec?d =1+tan’d, and tan?0 =sec’d —1

e For example, if a > 0, let u = asin, where —7/2 < 0 < 7/2. Then

Va2 — 12 = /a2 — 22sin20 = a2(1 —sin?0) = Va2 cos? § = acos¥.

o Note that cos@ > 0, because —7/2 < 0 < 7/2.
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© For integrals involving va2 — u?, let u = asinf. Then
Va? — u? = acosf, where —7/2 < 0 < 7/2.

a
u

) ]
Va*-u?

@ For integrals involving v/a2 + u?, let u = atan@. Then
Va2 + u? = asect, where —/2 <0 < /2.

© For integrals involving v u? — a2, let u = asecf.

i <
Then VIZ— 3 — atané if u> a, where 0 <0 < 7/2
—atanf, if u< —a, where /2 <6 <.

p Vu? - a?
‘ .

a
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Example 1 (Trigonometric substitution: u = asin6)

Find [ 5%~
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Example 2 (Trigonometric substitution: u = atan6)

Find fﬂdx—gﬁ.
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Example 3 (Trigonometric substitution: rational powers)

Find f( 2+1)3/2
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Example 4 (Converting the limits of integration)

Evaluate f\% in_3 dx.
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Theorem 8.2 (Special integration formulas (a > 0) (Exercise 65))

Q [Va®—uvdu= %(a arcsin 4 +ux/32—u2>+C
Q [V —2a’du= %(ux/uz—a2—azln|u+\/u2—az‘)-l-C, u>a
O [Vt adu=} (W@ +2n|u+ Vi +2|) + C
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Partial fractions

@ The Method of Partial Fractions is a procedure for decomposing a
rational function into simpler rational functions to which you can
apply the basic integration formulas.

@ To see the benefit of the Method of Partial Fractions, consider the

integral
1
———dx.
/x2—5x+6 x

2+/x2-5x+6

secf=2x— 5

Figure 4: Trigonometric substitution.
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@ To evaluate this integral without partial fractions, you can complete
the square and use trigonometric substitution (see Figure 4) to obtain

N

/1d _/ dx _l 5 1 0
X2 5x16 ) (x—5/22_(1/22 T2 27 2%

_/(1/2)sec6?tan0d6 1

(1/4)tan20

N

:2/csc9d9: —2In|cscf + cot | + C

= 2In]|csc — cotf| + C

=2In

=2In

=2In

2x — 5 1 ‘
2Vx2 —5x+6 2Vx2—5x+6
x—3

x2 —5x+6
VX3l o X 234
N -2

=lIn|x=3]=Injx—2|+ C.
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@ Now, suppose you had observed that

1 1 1

= — . Partial fraction decomposition
X2 _Bx+6 x—-3 x_2 P

@ Then you could evaluate the integral easily, as follows.

1 1 1
/x2—5x+6dx_/<x—3_x—2> dx

=Inlx=3]=Injx—=2|+C

@ This method is clearly preferable to trigonometric substitution.
However, its use depends on the ability to factor the denominator,
x2 — 5x + 6, and to find the partial fractions

1 1
<3 and VT
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@ Divide if improper: If N(x)/D(x) is an improper fraction (that is, if
the degree of the numerator is greater than or equal to the degree
of the denominator), divide the denominator into the numerator to

obtain
N(x) Ny (x)

D) = (a polynomial) + D(x)

where the degree of Ni(x) is less than the degree of D(x). Then
apply Steps 2, 3, and 4 to the proper rational expression

Ni(x)/D(x).
@ Factor denominator: Completely factor the denominator into
factors of the form

(px +q)™ and (ax®+ bx +c)"

where ax? + bx + c is irreducible.
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© Linear factors: For each factor of the form (px + )™, the partial
fraction decomposition must include the following sum of m
fractions.
A A A
1 JL 2 5 db oo dh 7mm
(px+4q)  (px+q) (px +q)

@ Quadratic factors: For each factor of the form (ax? + bx + c)", the
partial fraction decomposition must include the following sum of n
fractions.

Bix+ G Box + G B.x + C,
ax?+ bx+c  (ax?+ bx+¢)? (ax? + bx +¢)"
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Linear factors

Example 1 (Distinct linear factors)

. . . . 1
Write the partial fraction decomposition for 5276
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Example 2 (Repeated linear factors)

. 2
Find j‘ 5x°420x+6 dx.

X342x2+x
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Quadratic factors

Example 3 (Distinct linear and quadratic factors)

Find f—( 23 —4x=8

x2—x)(x?+4)
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Example 4 (Repeated quadratic factors)

H X3 X
Find [ % dx.
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Guidelines for solving the basic equation

Linear Factors
© Substitute the roots of the distinct linear factors in the basic
equation.
@ For repeated linear factors, use the coefficients determined in
guideline 1 to rewrite the basic equation. Then substitute other
convenient values of x and solve for the remaining coefficients.

Quadratic Factors
@ Expand the basic equation.
@ Collect terms according to powers of x.

© Equate the coefficients of like powers to obtain a system of linear
equations involving A, B, C, and so on.

@ Solve the system of linear equations.
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@ It is not necessary to use the partial fractions technique on all rational
functions.

x2+1 1 3x2+3 1, |3
/de—3/WdX—3ln‘X +3X—4|+C

@ If the integrand is not in reduced form, reducing it may eliminate the
need for partial fractions.

x*—x—-2 (x+1)(x —2)
/x3—2x—4dx_/(x—2)(x2+2x—|—2)dx

x+1 1 5

© Finally, partial fractions can be used with some quotients involving
transcendental functions. For instance, the substitution u = sin x
allows you to write

/.Cc.)sxdx:/du. u = sinx, du = cos x dx
sin x(sinx — 1) u(u—1)
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The Trapezoidal Rule

@ One way to approximate a definite integral is to use n trapezoids.
@ In the development of this method, assume that f is continuous and
positive on the interval [a, b.

@ So, the definite integral
b
/ f(x)dx
represents the area of the region bounded by the graph of f and the

x-axis, from x = ato x = b.

v

\'\':

> X

Xp=a x| X, Xy x,=b
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e First, partition the interval [a, b] into n subintervals, each of width

Ax = (b — a)/n, such that

a:x0<x1<xz<-~-<x,,:b.

@ Then form a trapezoid for each subinterval (see Figure 5).

. . S f(x0)+f(x —
Figure 5: The area of the first trapezoid is {W} (b a).
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@ The area of the ith trapezoid is

Area of ith trapezoid = [

F(xi_1) + f(x;)} (b - a> |

2 n

@ This implies that the sum of the areas of the n trapezoids

Area — <b;a> [f(xo) er f(x1) P f(xn_1)2+ f(xn)]

= (%557 TG0+ £ + o) -+ Fspa) 4 £ o)

- (b;> [F(x0) +2F(xa) + - +2F (1) + F(xm)]
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e Letting Ax = (b — a)/n, you can take the limits as n — oo to obtain

lim. <b2_na> [F(x0) + 2F(x1) + 2f(x0) + - -+ 2F (xn_1) + F ()]

. [f(a) — F(B)]Ax < .
= |lim [ 3 +Zf(x,)Ax

n—o00 ¢
i=1

a)— —a ’ b
= fim [f(a) fés)](b )+H|Lngogf(x,)m:/a f(x) dx.

The result is summarized in the following theorem.
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Theorem 8.3 (The Trapezoidal Rule)

Let f be continuous on [a, b]. The Trapezoidal Rule for approximating
fab f(x)dx is given by

/b f(x)dx ~ % [f(x0) + 2f(x1) + 2f(x2) + - - - + 2f (xp—1) + F(xn)] -

Moreover, as n — oo, the right hand side approaches fab f(x) dx.
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Example 1 (Approximation with the Trapezoidal Rule)

Use the Trapezoidal Rule to approximate

™
/ sin x dx.
0

Compare the results for n =4 and n = 8, as shown in Figure 6.
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y=sinx y=sinx

I
3 bid
4

L
SIS

T
pus
8

W

g
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o8
R

Four subintervals Eight subintervals

Figure 6: Trapezoidal approximations for sinx, 0 < x < 7.
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@ Compare with the Midpoint Rule

b n . .
/ f(x)dx~ S F <X+2X‘1> Ax
a i=1

@ One way to view the trapezoidal approximation of a definite integral
is to say that on each subinterval you approximate f by a first-degree
polynomial.

@ In Simpson’s Rule, you take this procedure one step further and
approximate f by second-degree polynomials.

@ Before presenting Simpson’s Rule, we list a theorem for evaluating
integrals of polynomials of degree 2 (or less).
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Theorem 8.4 (Integral of p(x) = Ax® + Bx + C)

If p(x) = Ax? + Bx + C, then

[ o= (252 [ota) + 40 (52) + 0]
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Simpson’s Rule

@ To develop Simpson’s Rule for approximating a definite integral, you
again partition the interval [a, b] into n subintervals, each of width
Ax = (b—a)/n.

@ This time, however, n required to be even, and the subintervals are
grouped in pairs such that

a=xp<x1<Xxp <x3<x4<""<Xpo<Xp_1<Xp=>b.

-~

[x0, x2] [x2, xa] [Xn—2, xn]

@ On each (double) subinterval [xj_2, x;], you can approximate f by a
polynomial p of degree less than or equal to 2.
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e For example, on the subinterval [xg, x2], choose the polynomial of
least degree passing through the points (xo, yo), (x1,¥1), and (x2, y2),
as shown in Figure 7.

Figure 7: Simpson Rule: f):f p(x) dx ~ fxzz f(x)dx.
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@ Now, using p as an approximation of f on this subinterval, you have,
by Theorem 8.4,

X X
/ f(x)dx ~ / p(x) dx
X0 X0

=22 [P(Xo) +4p <X0+X2> + P(Xz)}

6 2

= M [p(x0) + 4p(x1) + p(x2)]

6
_ % [F(x0) + 4 (x1) + F(x2)] .

@ Repeating this procedure on the entire interval [a, b] produces the
following theorem.
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Theorem 8.5 (Simpson’s Rule)

Let f be continuous on [a, b] and let n be an even integer. The Simpson’s
Rule for approximating | ab f(x)dx is

/abf(x)dm

b:;a [f(x0) +4f(x1) + 2f(x2) + 4f(x3) + - - - + 4 (xn—1) + F(xn)] -

Moreover, as n — oo, the right-hand side approaches fab f(x)dx.
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Example 2 (Approximation with Simpson's Rule)

Use Simpson's Rule to approximate

™
/ sin x dx.
0

Compare the results for n =4 and n = 8.
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Error analysis

o If you must use an approximation technique, it is important to know
how accurate you can expect the approximation to be.

@ The following theorem, gives the formulas for estimating the errors
involved in the use of Simpson's Rule and the Trapezoidal Rule.

@ In general, when using an approximation, you can think of the error E
as the difference between fab f(x) dx and the approximation.
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Theorem 8.6 (Errors in the Trapezoidal Rule and Simpson's Rule)

If f has a continuous second derivative on |[a, b], then the error E in
approximating |, ab f(x)dx by the Trapezoidal Rule is

(b—a)?

E|l <
Bl < 12n2

[max|f"(x)]], a<x<b.

Moreover, if f has a continuous fourth derivative on [a, b], then the error
E is approximating fab f(x)dx by Simpson’s Rule is

_\5
E| < (’;30;’2 [max|f(4)(x)|} . a<x<bh.
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Example 3 (The approximate error in the Trapezoidal Rule)

Determine a value of n such that the Trapezoidal Rule will approximate
the value of fol V14 x2dx with an error that is less than or equal to 0.01.
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@ Improper integrals
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Improper integrals with infinite limits of integration

@ The definition of a definite integral

/a ’ F(x) dx

requires that the interval [a, b] be finite.

@ A procedure for evaluating integrals that do not satisfy these
requirements - usually because either one or both of the limits of
integration are infinite, or f has a finite number of
infinite discontinuities in the interval [a, b].

@ Integrals that possess either property are improper integrals. A
function f is said to have an infinite discontinuity at c if, from the
right or left,

llnc f(x) =00 or )I(lnc f(x) = —o0.
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Definition 8.1 (Improper integrals with infinite integration limits)

© If f is continuous on the interval [a, 00), then

OOfx)dx— I|m f(x
=gy, e

@ If f is continuous on the interval (—oo, b], then

/b f(x)dx = lim /bf(x)dx.

—00 a——o0 a

@ If f is continuous on the interval (—o0, 00), then

/_Zf(x)dx:/_;f(x)dx+/coof(x)dx

where c is any real number.
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In the above first two cases, the improper integral converges if the limit
exists-otherwise, the improper integral diverges. In the third case, the
improper integral on the left diverges if either of the improper integral on
the right diverges.

Example 1 (An improper integral that diverges)

Evaluate [;° dx
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Example 2 (Improper integrals that converge)

Evaluate each improper integral
a. [pTe*dx  b. [¥ 2lgd
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Example 3 (Using L'Hépital’s Rule with an improper integral)

Evaluate [7°(1 — x)e > dx.
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-0.03 +

—-0.06

—-0.09 + y=(1-x)e™
—0.12 4

-0.15 +

Figure 9: The area of the unbounded region is 1/e.
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Example 4 (Infinite upper and lower limits of integration)

X
Evaluate ffooo ]_fj dx.

Szu-Chi Chung (NSYSU) Chapter 8 Integration Techniques and Improp December 26, 2024 98 /109



Figure 10: The area of the unbounded region is 7/2.
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Definition 8.2 (Improper integrals with infinite discontinuities)

@ If f is continuous on the interval [a, b) and has an infinite
discontinuity at b, then

/ab ) dx = lim / F(x) dx.

@ If f is continuous on the interval (a, b] and has an infinite
discontinuity at a, then

/a  fx)dx = lim. / ) dx.

@ If f is continuous on the interval [a, b], except for some c in (a, b) at
which f has an infinite discontinuity, then

/ab F(x) dx = / £(x) dx+/cb £(x) dx.
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In the above first two cases, the improper integral converges if the limit
exists-otherwise, the improper integral diverges. In the third case, the
improper integral on the left diverges if either of the improper integral on
the right diverges.

Example 6 (An improper integral with an infinite discontinuity)

Evaluate fol ‘317;.
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Example 7 (An improper integrals that diverges)

2
Evaluate fo %.
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Example 8 (An improper integrals with an interior discontinuity)

2 dx
Evaluate 153"
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Example 9 (A doubly improper integral)

Evaluate [;° dx.

1
VRO D)
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Theorem 8.7 (A special type of improper integral)

/00 d = ifp>1
1 xP diverges, ifp<1
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Example 10 (An application involving a solid of revolution)

The solid formed by revolving (about the x-axis) the unbounded region
lying between the graph of f(x) = 1/x and the x-axis (x > 1) is called
Gabriel's Horn. (See Figure 11.) Show that this solid has a finite volume
and an infinite surface area.

Figure 11: Gabriel's Horn has a finite volume and an infinite surface area.
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@ In some cases, it is impossible or hard to find the exact value of an
improper integral, but it is important to determine whether the
integral converges or diverges.

Theorem 8.8 (Comparison Test for Improper Integrals)

Suppose the function f and g are continuous and 0 < g(x) < f(x) on the
interval [a,00). It can be shown that if [° f(x)dx converges, then

[, g(x) dx also converges, and if [° g(x)dx diverges, then [° f(x)dx
also diverges.

Theorem 8.9 (Limit Comparison Test for Improper Integrals)

Suppose the function f and g are continuous and 0 < g(x) and 0 < f(x)
on the interval [a,00). If limy_, oo % = L for some finite L > 0, then
[.° f(x)dx and [ g(x) dx either both converge or both diverge.
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Example 11 (Comparison Test for Improper Integrals)

Determine whether floo e dx converges of diverges.
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